Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.

نویسندگان

  • Adrian T Saurin
  • Hendrik Neubert
  • Jonathan P Brennan
  • Philip Eaton
چکیده

A principal product of the reaction between a protein cysteinyl thiol and hydrogen peroxide is a protein sulfenic acid. Because protein sulfenic acid formation is reversible, it provides a mechanism whereby changes in cellular hydrogen peroxide concentration may directly control protein function. We have developed methods for the detection and purification of proteins oxidized in this way. The methodology is based on the arsenite-specific reduction of protein sulfenic acid under denaturing conditions and their subsequent labeling with biotin-maleimide. Arsenite-dependent signal generation was fully blocked by pretreatment with dimedone, consistent with its reactivity with sulfenic acids to form a covalent adduct that is nonreducible by thiols. The biotin tag facilitates the detection of protein sulfenic acids on Western blots probed with streptavidin-horseradish peroxidase and also their purification by streptavidin-agarose. We have characterized protein sulfenic acid formation in isolated hearts subjected to hydrogen peroxide treatment. We have also purified and identified a number of the proteins that are oxidized in this way by using a proteomic approach. Using Western immunoblotting we demonstrated that a highly significant proportion of some individual proteins (68% of total in one case) form the sulfenic derivative. We conclude that protein sulfenic acids are widespread physiologically relevant posttranslational oxidative modifications that can be detected at basal levels in healthy tissue, and are elevated in response to hydrogen peroxide. These approaches may find widespread utility in the study of oxidative stress, particularly because hydrogen peroxide is used extensively in models of disease or redox signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite.

Human serum albumin (HSA), the most abundant protein in plasma, has been proposed to have an antioxidant role. The main feature responsible for this property is its only thiol, Cys34, which comprises approximately 80% of the total free thiols in plasma and reacts preferentially with reactive oxygen and nitrogen species. Herein, we show that the thiol in HSA reacted with hydrogen peroxide with a...

متن کامل

Chemical dissection of an essential redox switch in yeast.

Saccharomyces cerevisiae responds to elevated levels of hydrogen peroxide in its environment via a redox relay system comprising the thiol peroxidase Gpx3 and transcription factor Yap1. In this signaling pathway, a central unresolved question is whether cysteine sulfenic acid modification of Gpx3 is required for Yap1 activation in cells. Here we report that cell-permeable chemical probes, which...

متن کامل

Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies.

Hydrogen peroxide (H2O2) functions as a second messenger that can activate cell proliferation through chemoselective oxidation of cysteine residues in signaling proteins. The connection between H2O2 signaling, thiol oxidation, and activation of growth pathways has emerged as fertile ground for the development of strategies for cancer treatment. Central to achieving this goal is the development ...

متن کامل

Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins.

Cysteine sulfenic acid formation in proteins results from the oxidative modification of susceptible cysteine residues by hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This species represents a biologically significant modification occurring during oxidant signaling or oxidative stress, and it can modulate protein function. Most methods to identify such oxidatively modified protein...

متن کامل

Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C.

The mitochondrial flavoenzyme l-galactono-gamma-lactone dehydrogenase (GALDH) catalyzes the ultimate step of vitamin C biosynthesis in plants. We found that recombinant GALDH from Arabidopsis (Arabidopsis thaliana) is inactivated by hydrogen peroxide due to selective oxidation of cysteine (Cys)-340, located in the cap domain. Electrospray ionization mass spectrometry revealed that the partial r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 52  شماره 

صفحات  -

تاریخ انتشار 2004